
Assignment 6 
1. Find approximations for the two roots of the polynomial 0.0002358x2 – 5535.0x + 0.00003513 using the 

quadratic formula you learned in secondary school. Then, find the same roots, but choosing the appropriate 

formula for each. 

a =     0.0002358; 
b = -5535.0; 
c =     0.00003513; 
(-b + sqrt(b^2 - 4*a*c))/(2*a) % best for the larger root in absolute value 
        23473282.44274808 
(-b - sqrt(b^2 - 4*a*c))/(2*a) 
        5.785589705934657e-09 
(-2*c)/(b - sqrt(b^2 - 4*a*c)) % best for the smaller root in absolute value 
        6.346883468834690e-09 
 
2. Find approximations for the two roots of the polynomial 0.0002358x2 + 5535.0x – 0.00003513 using the 

quadratic formula you learned in secondary school. Then, find the same roots, but choosing the appropriate 

formula for each. 

a =    0.0002358; 
b = 5535.0; 
c =   -0.00003513; 
(-b + sqrt(b^2 - 4*a*c))/(2*a) 
        5.785589705934657e-09 
(-b - sqrt(b^2 - 4*a*c))/(2*a) % best for the larger root in absolute value 
       -23473282.44274810 
(-2*c)/(b + sqrt(b^2 - 4*a*c)) % best for the smaller root in absolute value 
        6.346883468834686e-09 
 
  



3. Given the function f (x) = x3 – x2 – x – 1, approximate the real root using two steps of each of: 

a. Newton’s method starting with x0 = 2.0, 

b. the bisection method starting with [1, 2], 

c. the bracketed secant method starting with [1, 2] (optional), and 

d. the secant method starting with x0 = 2.0 and x1 = 1.9. 

% Newton's method 
f = @(x)(x^3 - x^2 - x - 1.0); 
df = @(x)(3*x^2 - 2*x - 1.0); 
x0 = 2.0; 
x1 = x0 - f(x0)/df(x0) 
        x1 = 1.857142857142857 
x2 = x1 - f(x1)/df(x1) 
        x2 = 1.839544513457557 
 
% Bisection method 
a = 1; 
b = 2; 
m = (a + b)/2.0; 
if sign(f(a)) == sign(f(m)); a = m else b = m end 
         a = 1.500000000000000 
m = (a + b)/2.0; 
if sign(f(a)) == sign(f(m)); a = m else b = m end 
         a = 1.750000000000000 
 
% Bracketed secant method (optional) 
a = 1; 
b = 2; 
m = (a*f(b) - b*f(a))/(f(b) - f(a)); 
if sign(f(a)) == sign(f(m)); a = m else b = m end 
         a = 1.666666666666667 
m = (a*f(b) - b*f(a))/(f(b) - f(a)); 
if sign(f(a)) == sign(f(m)); a = m else b = m end 
         a = 1.816326530612245 
 
% Secant method 
x0 = 2.0; 
x1 = 1.9; 
x2 = (x0*f(x1) - x1*f(x0))/(f(x1) - f(x0)) 
        x2 = 1.846390168970814 
x3 = (x1*f(x2) - x2*f(x1))/(f(x2) - f(x1)) 
        x3 = 1.839628859068081 
 
 
  



4. Given the same function as in Question 3, approximate the first positive root using one step of each of: 

a. Muller’s method starting with x0 = 2.0, x1 = 1.9 and x2 = 1.8 (optional), and 

b. inverse quadratic interpolation with the same three points. 

% Muller's method (optional) 
x0 = 2.0; 
x1 = 1.9; 
x2 = 1.8; 
% Find the polynomial passing through 
%          (x0 - x2, f(x0)), (x1 - x2, f(x1)), (x2 - x2, f(x2)) 
p = polyfit( [x0 x1 x2] - x2, [f(x0) f(x1) f(x2)], 2 ) 
         p = 4.700000000000054   5.099999999999991  -0.208000000000000 
delta = (-2*p(3))/(p(2) + sqrt(p(2)^2 - 4*p(1)*p(3))) 
     delta = 3.935683999680209e-02 
x3 = x2 + delta 
        x3 = 1.839356839996802 
 
% Inverse quadratic interpolation 
x0 = 2.0; 
x1 = 1.9; 
x2 = 1.8; 
% Find the polynomial passing through (f(x0), x0), (f(x1), x1), (f(x2), x2) 
p = polyfit( [f(x0) f(x1) f(x2)], [x0 x1 x2], 2 ) 
         p = -0.02145975382064491   0.1825590389332351   1.838900714887409 
% Get the constant coefficient 
x3 = p(3) 
        x3 = 1.838900714887409 
  



5. Given the function f (x) = x2cos(0.4x)e–0.3x, approximate the first positive root using two steps of each of: 

a. Newton’s method starting with x0 = 4.0, 

b. the bisection method starting with [3, 4], 

c. the bracketed secant method starting with [3, 4] (optional), and 

d. the secant method starting with x0 = 3.8 and x1 = 3.9. 

% Newton's method 
f = @(x)(x^2*cos(0.4*x)*exp(-0.3*x)); 
df = @(x)(2.0*x  *cos(0.4*x)*exp(-0.3*x) 
        - 0.4*x^2*sin(0.4*x)*exp(-0.3*x) 
        - 0.3*x^2*cos(0.4*x)*exp(-0.3*x)); 
x0 = 4.0; 
x1 = x0 - f(x0)/df(x0) 
       x1 = 3.928021373533735 
x2 = x1 - f(x1)/df(x1) 
       x2 = 3.926991039021064 
 
% Bisection method 
a = 3.0; 
b = 4.0; 
m = (a + b)/2.0; 
if sign(f(a)) == sign(f(m)); a = m else b = m end 
        a = 3.500000000000000 
m = (a + b)/2.0; 
if sign(f(a)) == sign(f(m)); a = m else b = m end 
        a = 3.750000000000000 
 
% Bracketed secant method (optional) 
a = 3.0; 
b = 4.0; 
m = (a*f(b) - b*f(a))/(f(b) - f(a)); 
if sign(f(a)) == sign(f(m)); a = m else b = m end 
        a = 3.904055035798684 
m = (a*f(b) - b*f(a))/(f(b) - f(a)); 
if sign(f(a)) == sign(f(m)); a = m else b = m end 
        a = 3.926649703297110 
 
% Secant method 
x0 = 3.8; 
x1 = 3.9; 
x2 = (x0*f(x1) - x1*f(x0))/(f(x1) - f(x0)) 
       x2 = 3.927770674823227 
x3 = (x1*f(x2) - x2*f(x1))/(f(x2) - f(x1)) 
       x3 = 3.926986348481126 
  



6. Given the same function as in Question 5, approximate the first positive root using one step of each of: 

a. Muller’s method starting with x0 = 3.8, x1 = 4.0 and x2 = 3.9 (optional), and 

b. inverse quadratic interpolation with the same three points. 

% Muller's method (optional) 
x0 = 3.8; 
x1 = 4.0; 
x2 = 3.9; 
p = polyfit( [x0 x1 x2] - x2, [f(x0), f(x1), f(x2)], 2 ) 
         p = -0.4079818564029011  -1.876008417378137   0.05096502657785155 
delta = (-2*p(3))/(p(2) - sqrt(p(2)^2 - 4*p(1)*p(3))) 
     delta = 2.700810336615210e-02 
x3 = x2 + delta 
        x3 = 3.927008103366152 
 
x0 = 3.8; 
x1 = 4.0; 
x2 = 3.9; 
p = polyfit( [f(x0) f(x1) f(x2)], [x0 x1 x2], 2 ) 
         p = -0.06182184308358357  -0.5272495888523211   3.927031867462113 
x3 = p(3) 
        x3 = 3.927031867462113 
 
  



7. Apply two steps of the Jacobi method or the Gauss-Seidel method (optional) and then two steps of 

successive over-relaxation applied to these with  = 0.97 for the Jacobi method and  = 1.03 for the Gauss-

Seidel method to find an approximation of the solution to: 

10 2 3

2 10 1

   
   

   
u  . 

Answer: You don’t have to understand how to code the Matlab code, but you must understand what 

successive over-relaxation does, and how it may or may not be useful. Observe that while successive over-

relaxation does not significantly improve the Jacobi method, it is significantly more beneficial to the Gauss-

Seidel method, which is a small modification of the Jacobi method. 

A = [10 2; 2 10]; 
b = [3 1]'; 
x = A \ b        % The correct answer 
    x = 
       0.2916666666666667 
       0.04166666666666667 
 
D = diag( diag(A) ); 
invD = inv( D ); 
Aoff = A - D; 
x0 = invD*b 
    x0 = 
       0.3 
       0.1 
  



%%%%%%%%%% 
% Jacobi % 
%%%%%%%%%% 
x1 = invD*(b - Aoff*x0) 
    x1 = 
       0.28 
       0.04 
 
x2 = invD*(b - Aoff*x1) 
    x2 = 
       0.292 
       0.044 
 
norm( x2 - x ) 
    ans = 2.357022603955160e-03 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Jacobi with over-relaxation % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
omega = 0.97; 
x1 = invD*(b - Aoff*x0); 
x1 = omega*x1 + (1 - omega)*x0 
   x1 = 
      0.2806 
      0.0418 
 
x2 = invD*(b - Aoff*x1); 
x2 = omega*x2 + (1 - omega)*x1 
    x2 = 
       0.2913088 
       0.0438176 
 
norm( x2 - x ) 
    ans = 2.180500574536862e-03 
 
  



%%%%%%%%%%%%%%%% 
% Gauss-Seidel %   Optional... 
%%%%%%%%%%%%%%%% 
x1 = x0; 
for k = 1:2 
    x1(k) = (b(k) - Aoff(k,:)*x1)/D(k, k); 
end 
x2 = x1; 
for k = 1:2 
    x2(k) = (b(k) - Aoff(k,:)*x2)/D(k,k); 
end 
 
norm( x2 - x ) 
    ans = 4.759084879353294e-04 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Gauss-Seidel with successive over-relaxation %   Optional... 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
omega = 1.03; 
x1 = x0; 
for k = 1:2 
    x1(k) = (b(k) - Aoff(k,:)*x1)/D(k,k); 
end 
x1 = omega*x1 + (1 - omega)*x0 
    x1 = 
       0.2794 
       0.04232 
 
x2 = x1; 
for k = 1:2 
    x2(k) = (b(k) - Aoff(k,:)*x2)/D(k,k); 
end 
x2 = omega*x2 + (1 - omega)*x1 
    x2 = 
       0.2919 
       0.041673984 
 
norm( x2 - x ) 
    ans = 2.335280016291043e-04  



8. Apply two steps of the Jacobi method or the Gauss-Seidel method (optional) and then two steps of 

successive over-relaxation applied to these with  = 0.99 for the Jacobi method and  = 1.08 for the Gauss-

Seidel method to find an approximation of the solution to: 

5 2 1 2

2 10 3 1

1 3 20 1

   
   

    
      

u . 

Answer: You don’t have to understand how to code the Matlab code, but you must understand what 

successive over-relaxation does, and how it may or may not be useful. Observe that while successive over-

relaxation does not significantly improve the Jacobi method, it is significantly more beneficial to the Gauss-

Seidel method, which is a small modification of the Jacobi method. 

A = [5 2 1; 2 10 -3; 1 -3 20]; 
b = [2 1 1]'; 
x = A \ b        % The correct answer 
    x = 
       0.3786635404454864 
       0.03516998827667058 
       0.03634232121922626 
 
D = diag( diag(A) ); 
invD = inv( D ); 
Aoff = A - D; 
x0 = invD*b 
    x0 = 
       0.4 
       0.1 
       0.05 
  



%%%%%%%%%% 
% Jacobi % 
%%%%%%%%%% 
x1 = invD*(b - Aoff*x0) 
    x1 = 
       0.35 
       0.035 
       0.045 
 
x2 = invD*(b - Aoff*x1) 
    x2 = 
       0.377 
       0.0435 
       0.03775 
 
norm( x2 - x ) 
    ans = 8.610343876664588e-03 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Jacobi with over-relaxation % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
omega = 0.99; 
x1 = invD*(b - Aoff*x0); 
x1 = omega*x1 + (1 - omega)*x0 
    x1 = 
       0.3505 
       0.03565 
       0.04505 
 
x2 = invD*(b - Aoff*x1); 
x2 = omega*x2 + (1 - omega)*x1 
    x2 = 
       0.3764677 
       0.04333735 
       0.037894775 
 
>> norm( x2 - x ) 
    ans = 8.598699059926416e-03 
  



%%%%%%%%%%%%%%%% 
% Gauss-Seidel %   Optional... 
%%%%%%%%%%%%%%%% 
x1 = x0; 
for k = 1:3 
    x1(k) = (b(k) - Aoff(k,:)*x1)/D(k, k); 
end 
x2 = x1; 
for k = 1:3 
    x2(k) = (b(k) - Aoff(k,:)*x2)/D(k,k); 
end 
norm( x2 - x ) 
    ans = 4.874905937179975e-03 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Gauss-Seidel with successive over-relaxation %   Optional... 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
omega = 1.08; 
x1 = x0; 
for k = 1:3 
    x1(k) = (b(k) - Aoff(k,:)*x1)/D(k,k); 
end 
x1 = omega*x1 + (1 - omega)*x0 
    x1 = 
       0.346 
       0.0406 
       0.03839 
 
x2 = x1; 
for k = 1:3 
    x2(k) = (b(k) - Aoff(k,:)*x2)/D(k,k); 
end 
x2 = omega*x2 + (1 - omega)*x1 
    x2 = 
       0.37848856 
       0.035956648 
       0.0365010692 
 
norm( x2 - x ) 
    ans = 8.213723869300104e-04 
  



9. The following system is given with the solution: 

2 5 1 7

5 1 1 6

    
    

    
 . 

If you were to try to apply the Gauss-Seidel method to find the solution, does it seem to converge? Why 

does this happen? 

A = [2 5; 5 1]; 
b = [7 6]'; 
D = diag( diag(A) ); 
Aoff = A - D; 
x0 = inv(D)*b 
     x0 = 3.5 
          6.0 
 
x1 = x0; 
for k = 1:2 
    x1(k) = (b(k) - Aoff(k,:)*x1)/D(k,k); 
end 
x1 
     x1 = -11.5 
           63.5 
 
x2 = x1; 
for k = 1:2 
    x2(k) = (b(k) - Aoff(k,:)*x2)/D(k,k); 
end 
x2 
     x2 = -155.25 
           782.25 
 
Note that the off-diagonal entries are significantly larger in absolute value, so each time we are calculating 

Aoffxk, this is magnifying the result, and thus dividing by the diagonal entries does not reduce this value.  



10. Could you use the method of successive over-relaxation with a method such as Newton’s method? For 

example, if you found that x1 > x2 > x3 > x4, might it not make sense to try to use  = 1.05? Similarly, if 

successive approximations move back and forth, might it not make sense to try to use  = 0.95? 

Yes, but you’d have to be careful. Also, finding the correct value of may be difficult if you’re only using 

Newton’s method once; however, yes, it would work, for Newton’s method, too. Indeed, it would 

potentially work for any iterative method if a reasonable value of  is determined. 

Note, if Newton’s method appears to be converging linearly (that is, O(h)), this may suggest that it is 

converging to a root with multiplicity greater than one, so you may try using  = 2 or even higher. 


